Cumulative Effects in 100 kHz Repetition-Rate Laser-Induced Plasma Filaments in Air

ADVANCED PHOTONICS RESEARCH(2023)

引用 1|浏览29
暂无评分
摘要
Cumulative effects are crucial for applications of laser filaments, such as for the remote transfer of energy and the control of electric discharges. Up to now, studies of cumulative effects in the air of high-repetition-rate pulse trains have been performed at lower rates than 10 kHz. Herein, the nonlinear effects associated with short plasma filaments produced by pulses of moderate energy (0.4 mJ per pulse) and repetition rates up to 100 kHz are experimentally characterized. With increasing repetition rate, a decrease in absorption, fluorescence emission, and breakdown voltage and concurrently an increase in peak intensity and third-harmonic-generation efficiency are observed. Hydrodynamic simulations of the heated gas show that the observed decreases are directly related to a quasi-stationary state of reduced gas density in the filament. However, further investigations are required to fully understand the physics underpinning the observed sharp reduction of the breakdown voltage at 100 kHz repetition rates. The results may prove relevant for energy and information delivery applications by laser-induced air waveguide or electric discharge and lightning control.
更多
查看译文
关键词
filaments,fluorescence,high-repetition-rate,hydrodynamic models,light-matter interaction,plasma
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要