Reservoir characteristics and pore fluid evaluation of Shan 2(3) Submember transitional shale, eastern Ordos Basin, China: Insights from NMR experiments

FRONTIERS IN EARTH SCIENCE(2023)

引用 0|浏览4
暂无评分
摘要
The Lower Permian Shanxi Formation in the Eastern Ordos Basin is a set of transitional shale, and it is also a key target for shale gas exploration in China. Three sets of organic-rich transitional shale intervals (Lower shale, Middle shale and Upper shale) developed in Shan 2(3) Submember of Shanxi Formation. Based on TOC test, X-diffraction, porosity, in-situ gas content experiment and NMR experiments with gradient centrifugation and drying temperature, the reservoir characteristics and pore fluid distribution of the three sets of organic-rich transitional shale are studied. The results show that: 1) The Middle and Lower shales have higher TOC content, brittleness index and gas content, reflecting better reservoir quality, while the Upper shales have lower gas content and fracturing ability. The total gas content of shale in the Middle and Lower shales is high, and the lost gas and desorbed gas account for 80% of the total gas content. 2) The Middle shale has the highest movable water content (32.58%), while the Lower shale has the highest capillary bound water content (57.52%). In general, the capillary bound water content of marine-continental transitional shale in the Shan 2(3) Submember of the study area is high, ranging from 39.96% to 57.52%. 3) Based on pore fluid flow capacity, shale pores are divided into movable pores, bound pores and immovable pores. The Middle shale and the Lower shale have high movable pores, with the porosity ratio up to 27%, and the lower limit of exploitable pore size is 10 nm. The movable pore content of upper shale is 25%, and the lower limit of pore size is 12.6 nm. It is suggested that the Lower and Middle shales have more development potential under the associated development technology.
更多
查看译文
关键词
transitional shale,pore structure,fluid evaluation,upper permian,Shan 2(3) Submember,Ordos Basin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要