METTL3 potentiates osteogenic differentiation of bone marrow mesenchymal stem cells via IGF2BP1/m6A/RUNX2.

Oral diseases(2023)

引用 3|浏览0
暂无评分
摘要
OBJECTIVE:Maxillofacial bone defect is a critical obstacle for maxillofacial tumors and periodontal diseases. The osteogenic differentiation of bone marrow mesenchymal stem cells BMSCs is critical for maxillofacial osteogenesis and functional reconstruction. Here, our study focused on the functions and mechanism of N6-methyladenosine during BMSCs osteogenic differentiation BMSCs. SUBJECT AND METHODS:Biofunctions of BMSCs were detected using ALP activity and alizarin red S staining assays. The molecular interaction within RNA/protein was identified by RNA immunoprecipitation and/or methylation immunoprecipitation. RESULTS:Results indicated that m6A 'writer' METTL3 upregulated during the osteogenic differentiation of BMSCs upon osteogenic induction. Functionally, assays' results revealed that METTL3 overexpression promoted the osteogenic differentiation of BMSC, while METTL3 knockdown repressed the osteogenic differentiation. Mechanistically, results revealed that RUNX2 mRNA was a m6A-methylated target by METTL3 at its 3'-UTR. Moreover, m6A reader IGF2BP1 recognized the m6A site on RUNX2 mRNA to enhance its stability. CONCLUSION:In conclusion, our findings revealed the novel roles of METTL3 in BMSCs osteogenic differentiation via the IGF2BP1/m6A/RUNX2 signaling axis of m6A-dependent manner, providing a potential therapeutic target for maxillofacial bone defects treatment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要