谷歌浏览器插件
订阅小程序
在清言上使用

Efficiency of Lagoon-Based Municipal Wastewater Treatment in Removing Microplastics.

Science of the total environment(2023)

引用 5|浏览4
暂无评分
摘要
Municipal wastewater treatment plants act as a sink, but also are a source of microplastics in the environment. A conventional wastewater lagoon system and an activated sludge (AS)-lagoon system in Victoria (Australia) were investigated through a two-year sampling program to understand the fate and transport of MP in such treatment processes. The abundance (>25 μm) and characteristics (size, shape, and colour) of the microplastics present in the various wastewater streams were determined. The mean values of MP in the influent of the two plants were 55.3 ± 38.4 and 42.5 ± 20.1 MP/L, respectively. The dominant MP size of influent and final effluent was <500 μm, with 25–200 μm accounting for >65 % of the total MP; synthetic fibres were the dominant MP in all wastewater streams. Influent MP concentration was significantly higher in summer than in other seasons for both systems, which was related to the lower plant inflow due to less stormwater entering the sewer during summer. The promising MP removal capability of the lagoon system (97 %) was attributed to its lengthy wastewater detention time (total HRT >250 days, including the storage lagoons) that would allow effective separation of MP from the water column via various physical and biological pathways. For the AS-lagoon system, the high MP reduction efficiency (98.4 %) was attributed to the post-secondary treatment of the wastewater with the lagoon system, in which MP was further removed during the month-long detention in the lagoons. The results indicated the potential of such low-energy and low-cost wastewater treatment systems for MP control.
更多
查看译文
关键词
Microplastics,Emerging contaminants,Removal efficiency,Wastewater treatment,Wastewater lagoons
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要