STWD-SFNN: Sequential three-way decisions with a single hidden layer feedforward neural network

Information Sciences(2023)

Cited 3|Views36
No score
The three-way decisions strategy has been employed to construct network topology in a single hidden layer feedforward neural network (SFNN). However, this model has a general performance, and does not consider the process costs, since it has fixed threshold parameters. Inspired by the sequential three-way decisions (STWD), this paper proposes STWD with an SFNN (STWD-SFNN) to enhance the performance of networks on structured datasets. STWD-SFNN adopts multi-granularity levels to dynamically learn the number of hidden layer nodes from coarse to fine, and set the sequential threshold parameters. Specifically, at the coarse granular level, STWD-SFNN handles easy-to-classify instances by applying strict threshold conditions, and with the increasing number of hidden layer nodes at the fine granular level, STWD-SFNN focuses more on disposing of the difficult-to-classify instances by applying loose threshold conditions, thereby realizing the classification of instances. Moreover, STWD-SFNN considers and reports the process cost produced from each granular level. The experimental results verify that STWD-SFNN has a more compact network on structured datasets than other SFNN models, and has better generalization performance than the competitive models. All models and datasets can be downloaded from
Translated text
Key words
Network topology,Hidden layer node,Sequential three-way decisions,Granular level,Sequential thresholds
AI Read Science
Must-Reading Tree
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined