Toward Standardized Performance Evaluation of Flow-guided Nanoscale Localization


Cited 0|Views60
No score
Nanoscale devices with Terahertz (THz) communication capabilities are envisioned to be deployed within human bloodstreams. Such devices will enable fine-grained sensing-based applications for detecting early indications (i.e., biomarkers) of various health conditions, as well as actuation-based ones such as targeted drug delivery. Associating the locations of such events with the events themselves would provide an additional utility for precision diagnostics and treatment. This vision yielded a new class of in-body localization coined under the term "flow-guided nanoscale localization". Such localization can be piggybacked on THz communication for detecting body regions in which biological events were observed based on the duration of one circulation of a nanodevice in the bloodstream. From a decades-long research on objective benchmarking of "traditional" indoor localization, as well as its eventual standardization (e.g., ISO/IEC 18305:2016), we know that in early stages the reported performance results were often incomplete (e.g., targeting a subset of relevant performance metrics), carrying out benchmarking experiments in different evaluation environments and scenarios, and utilizing inconsistent performance indicators. To avoid such a "lock-in" in flow-guided localization, in this paper we propose a workflow for standardized performance evaluation of such localization. The workflow is implemented in the form of an open-source simulation framework that is able to jointly account for the mobility of the nanodevices, in-body THz communication between with on-body anchors, and energy-related and other technological constraints (e.g., pulse-based modulation) at the nanodevice level. Accounting for these constraints, the framework is able to generate the raw data that can be streamlined into different flow-guided localization solutions for generating standardized performance benchmarks.
Translated text
Key words
AI Read Science
Must-Reading Tree
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined