Unfolding and modeling the recovery process after COVID lockdowns

Scientific reports(2023)

Cited 0|Views15
No score
Lockdown is a common policy used to deter the spread of COVID-19. However, the question of how our society comes back to life after a lockdown remains an open one. Understanding how cities bounce back from lockdown is critical for promoting the global economy and preparing for future pandemics. Here, we propose a novel computational method based on electricity data to study the recovery process, and conduct a case study on the city of Hangzhou. With the designed Recovery Index , we find a variety of recovery patterns in main sectors. One of the main reasons for this difference is policy; therefore, we aim to answer the question of how policies can best facilitate the recovery of society. We first analyze how policy affects sectors and employ a change-point detection algorithm to provide a non-subjective approach to policy assessment. Furthermore, we design a model that can predict future recovery, allowing policies to be adjusted accordingly in advance. Specifically, we develop a deep neural network, TPG , to model recovery trends, which utilizes the graph structure learning to perceive influences between sectors. Simulation experiments using our model offer insights for policy-making: the government should prioritize supporting sectors that have greater influence on others and are influential on the whole economy.
Translated text
Key words
Applied mathematics,Computational science,Computer science,Scientific data,Science,Humanities and Social Sciences,multidisciplinary
AI Read Science
Must-Reading Tree
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined