Classification and emergence of quantum spin liquids in chiral Rydberg models

PHYSICAL REVIEW B(2023)

引用 0|浏览2
暂无评分
摘要
We investigate the nature of quantum phases arising in chiral interacting Hamiltonians recently realized in Rydberg atom arrays. We classify all possible fermionic chiral spin liquids with U(1) global symmetry using parton construction on the honeycomb lattice. The resulting classification includes six distinct classes of gapped quantum spin liquids: the corresponding variational wavefunctions obtained from two of these classes accurately describe the Rydberg many-body ground state at 1/2 and 1/4 particle density. Complementing this analysis with tensor network simulations, we conclude that both particle filling sectors host a spin liquid with the same topological order of nu = 1/2 fractional quantum Hall effect. At density 1/2, our results clarify the phase diagram of the model, while at density 1/4, they provide an explicit construction of the ground-state wavefunction with almost unit overlap with the microscopic one. These findings pave the way to the use of parton wavefunctions to guide the discovery of quantum spin liquids in chiral Rydberg models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要