谷歌浏览器插件
订阅小程序
在清言上使用

Influence of Oxygen Atoms and Ring Strain on the Low-Temperature Oxidation Pathways of 1,3-Dioxolane

The journal of physical chemistry. A(2023)

引用 0|浏览9
暂无评分
摘要
Biohybrid fuels are a promising solution for making the transportation sector more environmentally friendly. One such interesting fuel candidate is 1,3-dioxolane, which can be produced from inedible biomass. However, very little kinetics data are available for the low-temperature oxidation of this fuel molecule. To remedy this, we present the reaction kinetics of O-2 addition to 1,3-dioxolanyl radicals in this work. All energies have been calculated at the DLPNO-CCSD(T)/CBS//B2PLYPD3BJ/6-311+g(d,p) level of theory. Temperature- and pressure-dependent reaction rate constants have been calculated with the RRKM/master equation method. The effects of heterocyclic oxygen atoms and ring strain on the low-temperature oxidation of 1,3-dioxolane are also compared to that of similar fuel molecules containing five heavy atoms: cyclopentane, tetrahydrofuran, and diethyl ether (DEE). The ring-opening beta-scission reactions of the dioxolane hydroperoxy species are found to be the most dominant pathways following the oxidation of 1,3-dioxolanyl radicals. The heterocyclic oxygen atoms in 1,3-dioxolane weaken its C-O bonds, which leads to low barrier heights of the ring-opening reactions. Ring strain in 1,3-dioxolane increases the barriers for isomerization reactions of peroxy radicals compared to the similar reactions of DEE, which has a chain structure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要