Dissipation and energy propagation across scales in an active cytoskeletal material.

Proceedings of the National Academy of Sciences of the United States of America(2023)

引用 3|浏览17
暂无评分
摘要
Living systems are intrinsically nonequilibrium: They use metabolically derived chemical energy to power their emergent dynamics and self-organization. A crucial driver of these dynamics is the cellular cytoskeleton, a defining example of an active material where the energy injected by molecular motors cascades across length scales, allowing the material to break the constraints of thermodynamic equilibrium and display emergent nonequilibrium dynamics only possible due to the constant influx of energy. Notwithstanding recent experimental advances in the use of local probes to quantify entropy production and the breaking of detailed balance, little is known about the energetics of active materials or how energy propagates from the molecular to emergent length scales. Here, we use a recently developed picowatt calorimeter to experimentally measure the energetics of an active microtubule gel that displays emergent large-scale flows. We find that only approximately one-billionth of the system's total energy consumption contributes to these emergent flows. We develop a chemical kinetics model that quantitatively captures how the system's total thermal dissipation varies with ATP and microtubule concentrations but that breaks down at high motor concentration, signaling an interference between motors. Finally, we estimate how energy losses accumulate across scales. Taken together, these results highlight energetic efficiency as a key consideration for the engineering of active materials and are a powerful step toward developing a nonequilibrium thermodynamics of living systems.
更多
查看译文
关键词
active matter,energetic efficiency,molecular motors,picocalorimeter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要