Emerging ultrafast techniques for studying quantum materials

NATURE REVIEWS MATERIALS(2023)

引用 12|浏览10
暂无评分
摘要
In quantum materials, emergent functional properties resulting from strong correlations or electronic topology offer opportunities for new applications. Over the past decade, ultrafast techniques such as photoemission, scattering and optical spectroscopies have complemented traditional control knobs such as temperature, pressure, chemical substitution and external fields, adding the time coordinate as a new dimension for understanding and engineering the properties of quantum materials out of equilibrium. Despite remarkable progress, there remains a host of open questions that will require detailed understanding of the non-equilibrium response of quantum materials to enable applications in areas such as clean energy production, energy storage and quantum computation and communication. In this Review, we survey three categories of emerging ultrafast spectroscopies for investigating condensed matter systems — attosecond transient absorption spectroscopy, solid-state high-harmonic generation spectroscopy and extreme ultraviolet second-harmonic generation spectroscopy — and we discuss their potential applications to the study of quantum materials. We analyse these ultrafast tools from the standpoint of open questions in quantum materials, highlighting the unique observables and capabilities these methods can offer to address them.
更多
查看译文
关键词
Characterization and analytical techniques,High-harmonic generation,Optical spectroscopy,Ultrafast photonics,X-rays,Materials Science,general,Optical and Electronic Materials,Biomaterials,Nanotechnology,Condensed Matter Physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要