Measurement report: Chemical components and C-13 and N-15 isotoperatios of fine aerosols over Tianjin, North China: year-round observations

ATMOSPHERIC CHEMISTRY AND PHYSICS(2023)

引用 0|浏览18
暂无评分
摘要
To better understand the origins and seasonality of atmospheric aerosols in North China, we collected fine aerosols (PM2.5) at an urban site (Nankai District, ND) and a suburban site (Haihe Education Park, HEP) in Tianjin from July 2018 to July 2019. The PM2.5 was studied for carbonaceous, nitrogenous and ionic components and stable carbon and nitrogen isotope ratios of total carbon (delta(CTC)-C-13) and nitrogen (delta(NTN)-N-15). On average, the mass concentrations of PM2.5, organic carbon (OC), elemental carbon (EC) and water-soluble OC (WSOC) were higher in winter than in summer at both ND and HEP. SO42-, NO3- and NH4+ were the dominant ions, and their sum accounted for 89 % of the total ionic mass at ND and 87 % at HEP. NO3- and NH4+ peaked in winter and were at their minimum in summer, whereas SO42- was higher in summer than in all the other seasons at HEP and was comparable among the seasons, although it peaked in winter at ND. delta(CTC)-C-13 and delta(NTN)-N-15 were -26.5 %o to -21.9 %o and +1.01 %o to +22.8 %o at ND and -25.5 %o to -22.8 %o and +4.91 %o to +18.6 %o at HEP. Based on seasonal variations in the measured parameters, we found that coal and biomass combustion emissions are the dominant sources of PM2.5 in autumn and winter, while terrestrial and/or marine biological emissions are important in spring and summer in the Tianjin region, North China. In addition, our results implied that the secondary formation pathways of secondary organic aerosols in autumn/winter were different from those in spring/summer; i.e., they might be driven by NO3 radicals in the former period.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要