Population genomics and phylogeography of four Australasian waterfowl

EMU-AUSTRAL ORNITHOLOGY(2023)

引用 1|浏览14
暂无评分
摘要
Biogeographic barriers can restrict gene flow, but variation in ecological drivers of dispersal influences the effectiveness of these barriers among different species. Detailed information about the genetic connectivity and movement of waterfowl across biogeographic barriers in northern Australia and Papua New Guinea is limited. We compared genetic connectivity for four species of Australasian waterfowl that vary in their capacity and predisposition for dispersal: Radjah Shelduck (Radjah radjah), Wandering Whistling Duck (Dendrocygna arcuata), Green Pygmy Goose (Nettapus pulchellus), and Pacific Black Duck (Anas superciliosa). We obtained >3,700 loci from double-digest restriction-associated DNA sequencing for 15 to 40 individuals per species and found idiosyncratic patterns of population structure among the four species. The mostly sedentary Radjah Shelduck exhibited clear genetic differences between New Guinea and Australia as well as among locations within Australia. Although the population structure was consistent with isolation by distance, the Torres Strait and Carpentaria Barrier contributed more to genetic differences than geographic distance alone. In contrast, the presumed sedentary Green Pygmy Goose did not show obvious structure. Likewise, populations of the more dispersive Wandering Whistling Duck and Pacific Black Duck were unstructured and genetically indistinguishable between southern New Guinea and northern Australia. Our data suggest that some Australo-Papuan biogeographical barriers are insufficient to impede gene flow in waterfowl species capable of dispersing great distances. In sedentary species like the Radjah Shelduck, these barriers, perhaps coupled with its ecology and natural history, restrict gene flow. Our findings bring new insight into the population ecology of Australo-Papuan waterfowl.
更多
查看译文
关键词
Genomics,population structure,dispersal,kinship,Australasia,Anseriformes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要