Determinants of cytoplasmic microtubule depolymerization during ciliogenesis in Chlamydomonas reinhardtii

bioRxiv the preprint server for biology(2023)

引用 0|浏览3
暂无评分
摘要
At the core of cilia are microtubules which are important for establishing length and assisting ciliary assembly and disassembly; however, another role for microtubule regulation on ciliogenesis lies outside of the cilium. The microtubule cytoskeleton is a highly dynamic structure which polymerizes and depolymerizes rapidly to assist in cellular processes. These processes have been studied across various organisms with chemical as well as genetic perturbations. However, these have generated conflicting data in terms of the role of cytoplasmic microtubules (CytoMTs) and free tubulin dynamics during ciliogenesis. Here we look at the relationship between ciliogenesis and cytoplasmic microtubule dynamics in Chlamydomonas reinhardtii using chemical and mechanical perturbations. We find that not only can stabilized CytoMTs allow for normal ciliary assembly, but high calcium concentrations and low pH-induced deciliation cause CytoMTs to depolymerize separately from ciliary shedding. In addition, we find that ciliary shedding through mechanical shearing, cilia regenerate earlier despite intact CytoMTs. Our data suggests that cytoplasmic microtubules are not a sink for a limiting pool of cytoplasmic tubulin in Chlamydomonas , depolymerization that occurs following deciliation is a consequence rather than a requirement for ciliogenesis, and intact CytoMTs in the cytoplasm and the proximal cilium support more efficient ciliary assembly. ### Competing Interest Statement Prachee Avasthi is also the CSO of Arcadia Science
更多
查看译文
关键词
cytoplasmic microtubule reorganization,ciliogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要