Characterizing the monomer-dimer equilibrium of UbcH8/Ube2L6: A combined SAXS and NMR study

Kerem Kahraman,Scott A. Robson, Oktay Göcenler,Cansu M. Yenici, Cansu D. Tozkoparan, Jennifer M. Klein, Volker Dötsch, Emine Sonay Elgin,Arthur L. Haas, Joshua J. Ziarek,Çağdaş Dağ

biorxiv(2024)

引用 0|浏览6
暂无评分
摘要
Interferon-stimulated gene-15 (ISG15) is an interferon-induced protein with two ubiquitin-like (Ubl) domains linked by a short peptide chain, and the conjugated protein of the ISGylation system. Similar to ubiquitin and other Ubls, ISG15 is ligated to its target proteins through a series of E1, E2, and E3 enzymes known as Uba7, Ube2L6/UbcH8, and HERC5, respectively. Ube2L6/UbcH8 plays a literal central role in ISGylation, underscoring it as an important drug target for boosting innate antiviral immunity. Depending on the type of conjugated protein and the ultimate target protein, E2 enzymes have been shown to function as monomers, dimers, or both. UbcH8 has been crystalized in both monomeric and dimeric forms, but the functional state is unclear. Here, we used a combined approach of small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy to characterize UbcH8’s oligomeric state in solution. SAXS revealed a dimeric UbcH8 structure that could be dissociated when fused N-terminally to glutathione S-transferase. NMR spectroscopy validated the presence of a concentration-dependent monomer-dimer equilibrium and suggested a backside dimerization interface. Chemical shift perturbation and peak intensity analysis further suggest dimer-induced conformational dynamics at E1 and E3 interfaces - providing hypotheses for the protein’s functional mechanisms. Our study highlights the power of combining NMR and SAXS techniques in providing structural information about proteins in solution. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要