谷歌浏览器插件
订阅小程序
在清言上使用

Fine-Tuning Regulation of Surface Mobility by Acrylate Copolymers and Its Effect on Cell Adhesion and Differentiation.

ACS applied bio materials(2023)

引用 0|浏览4
暂无评分
摘要
Fibronectin (FN) mediates cell-material interactions during events such as tissue repair, and therefore the biomimetic modeling of this protein in vitro benefits regeneration. The nature of the interface is crucial in determining cell adhesion, morphology, and differentiation. Poly(ethyl acrylate) (PEA) spontaneously organizes FN into biological nanonetworks, resulting in exceptional bone regeneration in animal models. Spontaneous network organization of FN is also observed in poly(buthyl acrylate) (PBA) substrates that have higher surface mobility than PEA. C2C12 myoblasts differentiate efficiently on PEA and PBA substrates. In this study, we investigate if intermediate surface mobilities between PEA and PBA induce cell differentiation more efficiently than PEA. A family of P(EA-co-BA) copolymers were synthesized in the entire range of compositions to finely tune surface mobility between PEA and PBA. Surface characterization demonstrates that FN mobility steadily increased with the PBA content. All compositions allowed the biological organization of FN with similar exposure of cell binding domains. C2C12 myoblasts adhered well in all the materials, with higher focal adhesions in PEA and PBA. The increase of the interfacial mobility had an impact in cell adhesion by increasing the number of FAs per cell. In addition, cell differentiation decreased proportionally with surface mobility, from PEA to PBA.
更多
查看译文
关键词
acrylate copolymers,substrate mobility,fibronectin fibrillogenesis,cell adhesion,cell differentiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要