Control of white mold ( Sclerotinia sclerotiorum ) through plant-mediated RNA interference

Scientific reports(2023)

引用 0|浏览5
暂无评分
摘要
The causative agent of white mold, Sclerotinia sclerotiorum , is capable of infecting over 600 plant species and is responsible for significant crop losses across the globe. Control is currently dependent on broad-spectrum chemical agents that can negatively impact the agroecological environment, presenting a need to develop alternative control measures. In this study, we developed transgenic Arabidopsis thaliana (AT1703) expressing hairpin (hp)RNA to silence S. sclerotiorum ABHYDROLASE-3 and slow infection through host induced gene silencing (HIGS). Leaf infection assays show reduced S. sclerotiorum lesion size, fungal load, and ABHYDROLASE-3 transcript abundance in AT1703 compared to wild-type Col-0. To better understand how HIGS influences host–pathogen interactions, we performed global RNA sequencing on AT1703 and wild-type Col-0 directly at the site of S. sclerotiorum infection. RNA sequencing data reveals enrichment of the salicylic acid (SA)-mediated systemic acquired resistance (SAR) pathway, as well as transcription factors predicted to regulate plant immunity. Using RT-qPCR, we identified predicted interacting partners of ABHYDROLASE-3 in the polyamine synthesis pathway of S. sclerotiorum that demonstrate co-reduction with ABHYDROLASE-3 transcript levels during infection. Together, these results demonstrate the utility of HIGS technology in slowing S. sclerotiorum infection and provide insight into the role of ABHYDROLASE-3 in the A. thaliana – S. sclerotiorum pathosystem.
更多
查看译文
关键词
Biotechnology,Plant sciences,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要