谷歌浏览器插件
订阅小程序
在清言上使用

Mechanical Overload Induces TMJ Disc Degeneration Via TRPV4 Activation.

Oral diseases(2023)

引用 1|浏览17
暂无评分
摘要
OBJECTIVE:The temporomandibular joint (TMJ) disc cushions intraarticular stress during mandibular movements. While mechanical overloading is related to cartilage degeneration, the pathogenesis of TMJ disc degeneration is unclear. Here, we determined the regulatory role of mechanoinductive transient receptor potential vanilloid 4 (TRPV4) in mechanical overload-induced TMJ disc degeneration. METHODS:We explored the effect of mechanical overload on the TMJ discs in a rat occlusal interference model in vivo, and by applying sustained compressive force in vitro. TRPV4 inhibition was delivered by small interfering RNA or GSK2193874; TRPV4 activation was delivered by GSK1016790A. The protective effect of TRPV4 inhibition was validated in the rat occlusal interference model. RESULTS:Occlusal interference induced TMJ disc degeneration with enhanced extracellular matrix degradation in vivo and mechanical overload promoted inflammatory responses in the TMJ disc cells via Ca2+ influx with significantly upregulated TRPV4. TRPV4 inhibition reversed mechanical overload-induced inflammatory responses; TRPV4 activation simulated mechanical overload-induced inflammatory responses. Moreover, TRPV4 inhibition alleviated TMJ disc degeneration in the rat occlusal interference model. CONCLUSION:Our findings suggest TRPV4 plays a pivotal role in the pathogenesis of mechanical overload-induced TMJ disc degeneration and may be a promising target for the treatment of degenerative changes of the TMJ disc.
更多
查看译文
关键词
Ca2+ influx,mechanical force,MMPs,temporomandibular joint disc,TRPV4
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要