谷歌浏览器插件
订阅小程序
在清言上使用

Glutathione/Glucose-Depleting Nanoparticles with NO Generation for Ferroptosis/Starvation/NO-Induced Cancer Therapy

CHEMISTRY OF MATERIALS(2023)

引用 0|浏览11
暂无评分
摘要
Depleting intracellular glutathione (GSH) has emerged as a potent strategy to combat cancer. However, the existing GSH-depleting agents are too toxic or ineffective and standalone GSH depletion fails to yield a satisfactory curative effect. Herein, we present an intelligent nanoparticle that possesses GSH depletion, glucose consumption accompanied with H2O2 production, and NO generation properties for multimodal cancer therapy. The nanoparticle is constructed by synthesis of tetrasulfide bond-doped mesoporous silica nanoparticles followed by conjugating glucose oxidase (GOx) on the surface and loading L-arginine (L-Arg) into the mesopores. In this nanoparticle, the doped tetrasulfide bonds can quickly deplete GSH, which increases the cellular reactive oxygen species concentration to induce ferroptosis and meanwhile triggers particle biodegradation to expose the loaded L-Arg. Moreover, the elevated H2O2 level activates L-Arg to release NO for NO therapy. GOx consumes glucose to initiate starvation therapy and simultaneously produces a large amount of H2O2. Importantly, the produced H2O2 can not only potentiate ferroptosis but also promote NO release to enhance NO therapy. Besides, NO could in turn improve the efficacy of starvation therapy by damaging the mitochondria to block energy supply. In vitro and in vivo studies demonstrate that the nanoparticles show a great synergistic effect of ferroptosis/starvation/NO therapy, which can significantly kill cancer cells and remarkably inhibit tumor growth without obvious side effects. Therefore, we think that the designed nanoparticles may provide a promising paradigm for synergistic cancer therapy and hold a prospect in clinical trials.
更多
查看译文
关键词
glutathione/glucose-depleting,ferroptosis/starvation/no-induced,nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要