Emergence of superconductivity in single-crystalline LaFeAsO under simultaneous Sm and P substitution

JOURNAL OF ALLOYS AND COMPOUNDS(2023)

引用 2|浏览24
暂无评分
摘要
We report on the high-pressure growth, structural characterization, and investigation of the electronic properties of single-crystalline LaFeAsO co-substituted by Sm and P, in both its normal-and super-conducting states. Here, the appearance of superconductivity is attributed to the inner chemical pressure induced by the smaller-size isovalent substituents. X-ray structural refinements show that the partial substitution of La by Sm and As by P in the parent LaFeAsO compound leads to a contraction in both the conducting Fe-2(As,P)(2) layers and the interlayer spacing. The main parameters of the superconducting state, including the critical temperature, the lower-and upper critical fields, as well as the coherence length, the penetration depth, and their anisotropy, were determined from magnetometry measurements on a single -crystalline La0.87Sm0.13FeAs0.91P0.09O sample. The critical current density (jc), as resulting from loops of magnetization hysteresis in the self-generated magnetic field, is 2 x 10(6) A/cm(2) at 2 K. Overall, our findings illustrate a rare and interesting case of how superconductivity can be induced by co-substitution in the 1111 family. Such approach delineates new possibilities in the creation of superconductors by design, thus sti-mulating the exploration of related systems under multi-chemical pressure conditions. (c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
更多
查看译文
关键词
Crystal growth,Chemical substitutions,High pressure method,Fe based superconductors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要