Tunable spin and conductance in porphyrin-graphene nanoribbon hybrids

Communications Physics(2023)

引用 1|浏览4
暂无评分
摘要
Recently, porphyrin units have been attached to graphene nanoribbons (Por-GNR) enabling a multitude of structures. Here we report first-principles calculations of two prototypical, experimentally feasible, Por-GNR hybrids, one of which displays a small band gap relevant as electrodes in devices. Embedding a Fe atom in the porphyrin causes spin-polarized ground state ( S = 1). Using density functional theory and nonequilibrium Green’s function, we examine a 2-terminal setup involving a Fe-Por-GNR between small band gap, Por-GNR electrodes. The coupling between the Fe- d and GNR band states results in a Fano anti-resonance feature in the spin transport, making the conductance highly sensitive to the Fe spin state. We demonstrate how mechanical strain or chemical adsorption on the Fe give rise to spin-crossover to S = 2 and S = 0, directly reflected in the transmission. Our results provide a deep understanding which can open an avenue for carbon-based spintronics and chemical sensing.
更多
查看译文
关键词
Magnetic properties and materials,Spintronics,Physics,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要