Machine Reading Comprehension using Case-based Reasoning


引用 0|浏览76
We present an accurate and interpretable method for answer extraction in machine reading comprehension that is reminiscent of case-based reasoning (CBR) from classical AI. Our method (CBR-MRC) builds on the hypothesis that contextualized answers to similar questions share semantic similarities with each other. Given a target question, CBR-MRC retrieves a set of similar questions from a memory of observed cases and predicts an answer by selecting the span in the target context that is most similar to the contextualized representations of answers in the retrieved cases. The semi-parametric nature of our approach allows CBR-MRC to attribute a prediction to the specific set of cases used during inference, making it a desirable choice for building reliable and debuggable QA systems. We show that CBR-MRC achieves high test accuracy comparable with large reader models, outperforming baselines by 11.5 and 8.4 EM on NaturalQuestions and NewsQA, respectively. Further, we also demonstrate the ability of CBR-MRC in identifying not just the correct answer tokens but also the span with the most relevant supporting evidence. Lastly, we observe that contexts for certain question types show higher lexical diversity than others and find CBR-MRC to be robust to these variations while performance using fully-parametric methods drops.
AI 理解论文