谷歌浏览器插件
订阅小程序
在清言上使用

Construction of Co4 Atomic Clusters to Enable Fe−N4 Motifs with Highly Active and Durable Oxygen Reduction Performance

Angewandte Chemie International Edition(2023)

引用 20|浏览43
暂无评分
摘要
AbstractFe−N−C catalysts with single‐atom Fe−N4 configurations are highly needed owing to the high activity for oxygen reduction reaction (ORR). However, the limited intrinsic activity and dissatisfactory durability have significantly restrained the practical application of proton‐exchange membrane fuel cells (PEMFCs). Here, we demonstrate that constructing adjacent metal atomic clusters (ACs) is effective in boosting the ORR performance and stability of Fe−N4 catalysts. The integration of Fe−N4 configurations with highly uniform Co4 ACs on the N‐doped carbon substrate (Co4@/Fe1@NC) is realized through a “pre‐constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors. The as‐developed Co4@/Fe1@NC catalyst exhibits excellent ORR activity with a half‐wave potential (E1/2) of 0.835 V vs. RHE in acidic media and a high peak power density of 840 mW cm−2 in a H2−O2 fuel cell test. First‐principles calculations further clarify the ORR catalytic mechanism on the identified Fe−N4 that modified with Co4 ACs. This work provides a viable strategy for precisely establishing atomically dispersed polymetallic centers catalysts for efficient energy‐related catalysis.
更多
查看译文
关键词
Alkaline Fuel Cells,Metal-Organic Frameworks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要