In Situ Construction of Heterostructured Co3O4/CoP Nanoflake Arrays on Carbon Cloth as Binder-Free Anode for High-Performance Lithium-Ion Batteries

ACS APPLIED MATERIALS & INTERFACES(2023)

引用 0|浏览10
暂无评分
摘要
Cobalt oxide (Co3O4) is regarded as the anode material for lithium-ion batteries (LIBs) with great research value owing to its environmental friendliness and exceptional theoretical capacity. However, the low intrinsic conductivity, poor electrochemical kinetics, and unsatisfactory cycling performance severely limit its practical applications in LIBs. The construction of a self-standing electrode with heterostructure by introducing a highly conductive cobalt-based compound is an effective strategy to solve the above issues. Herein, Co3O4/CoP nanoflake arrays (NFAs) with heterostructure are constructed skillfully directly grown on carbon cloth (CC) by in situ phosphorization as an anode for LIBs. Density functional theory simulation results demonstrate that the construction of heterostructure greatly increases the electronic conductivity and Li ion adsorption energy. The Co3O4/CoP NFAs/CC exhibited an extraordinary capacity (1490.7 mA h g-l at 0.1 A g-l) and excellent performance at high current density (769.1 mA h g-l at 2.0 A g-l), as well as remarkable cyclic stability (451.3 mA h g-l after 300 cycles with a 58.7% capacity retention rate). The reasonable construction of heterostructure can promote the interfacial ion transport, significantly enhance the adsorption energy of lithium ions, improve the conductivity of Co3O4 electrode material, promote the partial charge transfer throughout the charge and discharge cycles, and enhance the overall electrochemical performance of the material.
更多
查看译文
关键词
anode materials, CoP, in situ phosphorization, heterostructure, lithium-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要