谷歌浏览器插件
订阅小程序
在清言上使用

Metabologenomics Analysis of Pseudomonas Sp. So3.2b, an Antarctic Strain with Bioactivity Against Rhizoctonia Solani.

Frontiers in microbiology(2023)

引用 1|浏览20
暂无评分
摘要
Introduction:Phytopathogenic fungi are a considerable concern for agriculture, as they can threaten the productivity of several crops worldwide. Meanwhile, natural microbial products are acknowledged to play an important role in modern agriculture as they comprehend a safer alternative to synthetic pesticides. Bacterial strains from underexplored environments are a promising source of bioactive metabolites.Methods:We applied the OSMAC (One Strain, Many Compounds) cultivation approach, in vitro bioassays, and metabolo-genomics analyses to investigate the biochemical potential of Pseudomonas sp. So3.2b, a strain isolated from Antarctica. Crude extracts from OSMAC were analyzed through HPLC-QTOF-MS/MS, molecular networking, and annotation. The antifungal potential of the extracts was confirmed against Rhizoctonia solani strains. Moreover, the whole-genome sequence was studied for biosynthetic gene clusters (BGCs) identification and phylogenetic comparison.Results and Discussion:Molecular networking revealed that metabolite synthesis has growth media specificity, and it was reflected in bioassays results against R. solani. Bananamides, rhamnolipids, and butenolides-like molecules were annotated from the metabolome, and chemical novelty was also suggested by several unidentified compounds. Additionally, genome mining confirmed a wide variety of BGCs present in this strain, with low to no similarity with known molecules. An NRPS-encoding BGC was identified as responsible for producing the banamides-like molecules, while phylogenetic analysis demonstrated a close relationship with other rhizosphere bacteria. Therefore, by combining -omics approaches and in vitro bioassays, our study demonstrates that Pseudomonas sp. So3.2b has potential application to agriculture as a source of bioactive metabolites.
更多
查看译文
关键词
bioactivity,OSMAC,molecular networking,secondary metabolites,genomics,biosynthetic gene cluster,bioprospecting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要