The antimicrobial efficacy of copper, cobalt, zinc and silver nanoparticles: alone and in combination

BIOMEDICAL MATERIALS(2023)

引用 2|浏览3
暂无评分
摘要
With the advent of nanotechnology, there has been an extensive interest in the antimicrobial potential of metals. The rapid and widespread development of antimicrobial-resistant and multidrug-resistant bacteria has prompted recent research into developing novel or alternative antimicrobial agents. In this study, the antimicrobial efficacy of metallic copper, cobalt, silver and zinc nanoparticles was assessed against Escherichia coli (NCTC 10538), S. aureus (ATCC 6538) along with three clinical isolates of Staphylococcus epidermidis (A37, A57 and A91) and three clinical isolates of E. coli (Strains 1, 2 and 3) recovered from bone marrow transplant patients and patients with cystitis respectively. Antimicrobial sensitivity assays, including agar diffusion and broth macro-dilution to determine minimum inhibitory and bactericidal concentrations (MIC/MBC) and time-kill/synergy assays, were used to assess the antimicrobial efficacy of the agents. The panel of test microorganisms, including antibiotic-resistant strains, demonstrated a broad range of sensitivity to the metals investigated. MICs of the type culture strains were in the range of 0.625-5.0 mg ml(-1). While copper and cobalt exhibited no difference in sensitivity between Gram-positive and Gram-negative microorganisms, silver and zinc showed strain specificity. A significant decrease (p < 0.001) in the bacterial density of E. coli and S. aureus was demonstrated by silver, copper and zinc in as little as two hours. Furthermore, combining metal nanoparticles reduced the time required to achieve a complete kill.
更多
查看译文
关键词
silver nanoparticles,antimicrobial efficacy,zinc
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要