Hybrid Harmony Search Optimization Algorithm for Continuous Functions
MATHEMATICAL AND COMPUTATIONAL APPLICATIONS(2023)
Abstract
This paper proposes a hybrid harmony search algorithm that incorporates a method of reinitializing harmonies memory using a particle swarm optimization algorithm with an improved opposition-based learning method (IOBL) to solve continuous optimization problems. This method allows the algorithm to obtain better results by increasing the search space of the solutions. This approach has been validated by comparing the performance of the proposed algorithm with that of a state-of-the-art harmony search algorithm, solving fifteen standard mathematical functions, and applying the Wilcoxon parametric test at a 5% significance level. The state-of-the-art algorithm uses an opposition-based improvement method (IOBL). Computational experiments show that the proposed algorithm outperforms the state-of-the-art algorithm. In quality, it is better in fourteen of the fifteen instances, and in efficiency is better in seven of fifteen instances.
MoreTranslated text
Key words
harmony search,improved learning,opposition-based,hybrid algorithm
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined