G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks through Attributed Client Graph Clustering
arXiv (Cornell University)(2023)
Abstract
As a collaborative paradigm, Federated Learning (FL) empowers clients to engage in collective model training without exchanging their respective local data. Nevertheless, FL remains vulnerable to backdoor attacks in which an attacker compromises malicious clients, and injects poisoned model weights into the aggregation process to yield attacker-chosen predictions for particular samples. Existing countermeasures, mainly based on anomaly detection, may erroneously reject legitimate weights while accepting malicious ones, which is due to inadequacies in quantifying client model similarities. Other defense mechanisms prove effective exclusively when confronted with a restricted number of malicious clients, e.g., less than 10%. To address these vulnerabilities, we present G$^2$uardFL, a protective framework that reframes the detection of malicious clients as an attributed graph clustering problem, thereby safeguarding FL systems. This framework employs a client graph clustering technique to identify malicious clients and incorporates an adaptive method to amplify the disparity between the aggregated model and poisoned client models, thereby eliminating previously embedded backdoors. A theoretical analysis of convergence is also performed to demonstrate that the global model closely approximates the model untouched by any backdoor. Through empirical evaluation compared to cutting-edge defenses and against various backdoor attacks, our experimental results indicate that G$^2$uardFL considerably undermines the effectiveness of backdoor attacks while maintaining a negligible impact on the benign sample performance.
MoreTranslated text
Key words
federated learning,backdoor attacks
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined