Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation

Nature Protocols(2023)

引用 0|浏览14
暂无评分
摘要
Ultraflexible microelectrode arrays (MEAs) that can stably record from a large number of neurons after their chronic implantation offer opportunities for understanding neural circuit mechanisms and developing next-generation brain–computer interfaces. The implementation of ultraflexible MEAs requires their reliable implantation into deep brain tissues in a minimally invasive manner, as well as their precise integration with optogenetic tools to enable the simultaneous recording of neural activity and neuromodulation. Here, we describe the process for the preparation of elastocapillary self-assembled ultraflexible MEAs, their use in combination with adeno-associated virus vectors carrying opsin genes and promoters to form an optrode probe and their in vivo experimental use in the brains of rodents, enabling electrophysiological recordings and optical modulation of neuronal activity over long periods of time (on the order of weeks to months). The procedures, including device fabrication, probe assembly and implantation, can be completed within 3 weeks. The protocol is intended to facilitate the applications of ultraflexible MEAs for long-term neuronal activity recording and combined electrophysiology and optogenetics. The protocol requires users with expertise in clean room facilities for the fabrication of ultraflexible MEAs.
更多
查看译文
关键词
Extracellular recording,Optogenetics,Life Sciences,general,Biological Techniques,Analytical Chemistry,Microarrays,Computational Biology/Bioinformatics,Organic Chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要