Numerical weather prediction models contain parameters that are inherently uncertain and cannot be determined exactly. Traditionally, t">

Algorithmic optimisation of key parameters of OpenIFS

crossref(2023)

引用 0|浏览2
暂无评分
摘要
<p align="justify">Numerical weather prediction models contain parameters that are inherently uncertain and cannot be determined exactly. Traditionally, the parameter tuning has been done manually, which can be an extremely labourious task. Tuning the entire model usually requires adjusting a relatively large amount of parameters. In case of manual tuning, the need to balance a number of requirements at the same time can lead the tuning process being a maze of subjective choices. It is, therefore, desirable to have reliable objective approaches for estimation of optimal values and uncertainties of these parameters. In this presentation we present how to optimise 20 key physical parameters having a strong impact on forecast quality. These parameters belong to the Stochastically Perturbed Parameters Scheme in the atmospheric model Open Integrated Forecasting System.</p> <p align="justify">The results show that simultaneous optimisation of <em>O(20)</em> parameters is possible with <em>O(100)</em> algorithm steps using an ensemble of <em>O(20)</em> members, and that the optimised parameters lead to substantial enhancement of predictive skill. The enhanced predictive skill can be attributed to reduced biases in low-level winds and upper-tropospheric humidity in the optimised model. We find that the optimisation process is dependent on the starting values of the parameters that are optimised (starting from better suited values results in a better model). The results also show that the applicability of the tuned parameter values across different model resolutions is somewhat questionable since the model biases seem to be resolution-specific. Moreover, our optimisation algorithm tends to treat the parameter covariances poorly limiting its ability to converge to the global optimum.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要