谷歌浏览器插件
订阅小程序
在清言上使用

The Effects of Surface Roughness on the Aerodynamic Drag Coefficient of Vehicles

International Journal of Automotive Science and Technology(2022)

引用 0|浏览1
暂无评分
摘要
In this study, the effects of surface roughness differences of vehicle coating materials (paint, paste, special applications, etc.) on the aerodynamic drag coefficient were inves-tigated using the finite element method. For this, aerodynamic drag forces and aerody-namic drag coefficients for speeds between 40-150 km/hours were calculated for a 1/20 scale vehicle designed by a package program by defining the body parts and front-rear window parts separately and assigning pre-calculated roughness values suitable in the industry, and the results were presented through graphs and visuals. Using three different paint roughness values (low, medium, and high), and one commonly used Teflon (fluoropolymer) coating, it was observed that the aerodynamic resistance coefficient in-creased with increasing roughness levels. Relative to the aerodynamic resistance coeffi-cient for the lowest paint roughness value, the aerodynamic resistance coefficient for the medium roughness value showed an increase of 0.000612529%, the aerodynamic resistance coefficient for the high roughness value showed an increase of 0.00104783%, and the aerodynamic resistance coefficient for the fluoropolymer coating showed an increase of 0.091195826%. In addition, the distribution of the pressure forces on the vehicle hood and windscreen were also observed in the study. It was observed that the pressure forces, which were approaching maximum on the front bumper, windscreen and side mirrors, were reduced over the rear windscreen area due to separated flow. It was also observed that the aerodynamic resistance force can be reduced by processes such as angular improvements to be made in the front bumper and vehicle windscreens.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要