Biodegradation of Neonicotinoids: Current Trends and Future Prospects

CURRENT POLLUTION REPORTS(2023)

引用 2|浏览0
暂无评分
摘要
Purpose of Review Neonicotinoids are synthetic insecticides, and among all agrochemicals, they rank second in consumption. The unparalleled use of neonicotinoids in various sectors including agriculture has currently reintroduced them as emerging pollutants/hazards due to their endocrine-disrupting nature. High water solubility, low volatility, and persistent nature have resulted in their accumulation in the environment. Thus, investigating efficient and sustainable methods for the remediation of contaminated environments due to this pollutant is imperative. Recent Findings. Bioremediation provides a cost-effective and environment-friendly option over conventional physicochemical techniques that produce toxic byproducts. The microbial route for degradation has the potential to completely mineralize neonicotinoids by virtue of their adaptive and diverse metabolic machinery. Potent microbes such as Ensifer , Phanerochaete , Bacillus , Ochrobactrum , Trametes , Rhodococcus , Sphingobacterium , and Pseudomonas have been isolated and screened for their immense degradation potential, and the metabolites, degradative enzymes, and transformation pathways have been elucidated. The incorporation of modern tools/techniques such as metabolic engineering, microbial biotechnology, omics-based database approaches or systems biology, artificial intelligence, and machine learning can fasten and give better bioremediation results. Summary This study has aimed to summarize the processes employed to date to degrade neonicotinoids and present a comprehensive report reflecting past efforts, advances, and future prospects. Therefore, this report will be beneficial in strengthening the understanding of the extent of efforts made for neonicotinoid degradation and how conventional approaches such as bioaugmentation, biostimulation, and biofiltration can be accelerated by advanced technologies viz., omics and machine learning.
更多
查看译文
关键词
Neonicotinoids,Biodegradation,Microbes,Multi-omics,Degradation pathways
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要