谷歌浏览器插件
订阅小程序
在清言上使用

Glycolytically impaired glial cells fuel neural metabolism via β-oxidation

crossref(2021)

引用 0|浏览3
暂无评分
摘要
Abstract Neuronal function is highly energy demanding and thus requires efficient and constant metabolite delivery. Like their mammalian counterparts Drosophila glia are highly glycolytic and provide lactate to fuel neuronal metabolism. However, flies are able to survive for several weeks in the absence of glial glycolysis1. Here, we study how glial cells maintain sufficient nutrient supply to neurons under conditions of carbohydrate restriction. We show that glycolytically impaired glia switch to fatty acid breakdown via β-oxidation and provide ketone bodies as an alternate neuronal fuel. Moreover, flies also rely on glial β-oxidation under starvation conditions with glial loss of β-oxidation increasing susceptibility to starvation. Further, we show that glial cells act as a metabolic sensor in the brain and can induce mobilization of peripheral energy stores to ensure brain metabolic homeostasis. In summary, our study gives pioneering evidence on the importance of glial β-oxidation and ketogenesis for brain function, and survival, under adverse conditions, like malnutrition. The glial capacity to utilize lipids as an energy source seems to be conserved from flies to humans.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要