谷歌浏览器插件
订阅小程序
在清言上使用

Gravity Measurements of the Juno Spacecraft Matched with Jupiter Models That Rely on a Dilute Core and Deep Winds

AGU Fall Meeting Abstracts(2020)

引用 0|浏览2
暂无评分
摘要
Since its arrival at Jupiter in 2016, the Juno spacecraft has measured the planet’s gravity fields with unprecedented precision. The interpretation of these measurements has been challenging because the magnitudes of the gravity coefficients J4 and J6 were smaller than predicted by traditional interiors models that included a dense inner core composed of rock and ice. Here we instead present models with dilute cores [Geophys. Res. Lett. 44 (2017) 4649] and deep-winds that conform to theoretical predictions of hydrogen-helium phase separation in the interior layer from approximately 0.8 to 0.85 Jupiter radii. Such models match the entire set of zonal gravity measurements by the Juno spacecraft. Our work is based on the accelerated version of the Concentric Maclaurin Spheroid method [Astrophysical J. 879 (2019) 78]. We conclude by comparing with models for Saturn’s interior.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要