Highly efficient photocathodic cascade material for constructing sensitive photoelectrochemical biosensor

Analytica Chimica Acta(2023)

引用 0|浏览6
暂无评分
摘要
Photocathodic biosensor possesses excellent anti-interference capability in bioanalysis, which however suffers from high electron-hole recombination rate with low photocurrent. Herein, a high-performance inorganic organic P3HT@C60@ZnO nanosphere with cascade energy band arrangement was synthesized as photoactive signal probe, which inherited the advantages of inorganic strong optical absorptivity and organic high mobility for photo-generated holes. Specifically, the well-matched band gap endowed not only the improved life for light generated carrier and promoted separation of electron-hole pairs, but also the expansion of charge-depletion layer, significantly improving the photoelectric conversion efficiency for acquiring an extremely high photocathodic signal that increased by 30 times compared with individual materials. Accordingly, by integrating with the efficient amplification of DNA nanonet derived from clamped hybrid chain reaction (C-HCR), a sensitive P3HT@C60@ZnO nanosphere based photocathodic biosensor was proposed for accurate detection of p53. The experimental results showed that the biosensor had a wide detection range from 0.1 fM to 10 nM and a low detection limit of 0.37 fM toward p53, offering a new avenue to construct sensitive PEC platform with superior anti-interference ability and hold a prospective application in early disease diagnosis and biological analysis.
更多
查看译文
关键词
efficient photocathodic cascade material
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要