Impact of Tiny Targets on Glossina fuscipes quanzensis, the primary vector of Human African Trypanosomiasis in the Democratic Republic of the Congo

crossref(2020)

引用 0|浏览3
暂无评分
摘要
AbstractBackgroundOver the past 20 years there has been a >95% reduction in the number of Gambian Human African trypanosomiasis (g-HAT) cases reported globally, largely as a result of large-scale active screening and treatment programmes. There are however still foci where the disease persists, particularly in parts of the Democratic Republic of the Congo (DRC). Additional control efforts such as tsetse control using Tiny Targets may therefore be required to achieve g-HAT elimination goals. The purpose of this study was to evaluate the impact of Tiny Targets within DRC.Methodology/Principal findingsIn 2015-2017, pre- and post-intervention tsetse abundance data were collected from 1,234 unique locations across three neighbouring Health Zones (Yasa Bonga, Mosango, Masi Manimba). Remotely sensed dry season data were combined with pre-intervention tsetse presence/absence data from 332 locations within a species distribution modelling framework to produce a habitat suitability map. The impact of Tiny Targets on the tsetse population was then evaluated by fitting a generalised linear mixed model to the relative fly abundance data collected from 889 post-intervention monitoring sites within Yasa Bonga, with habitat suitability, proximity to the intervention and intervention duration as covariates. Immediately following the introduction of the intervention, we observe a dramatic reduction in fly catches by > 85% (pre-intervention: 0.78 flies/trap/day, 95% CI 0.676-0.900; 3 month post-intervention: 0.11 flies/trap/day, 95% CI 0.070-0.153) which is sustained throughout the study period. Declines in catches were negatively associated with proximity to Tiny Targets, and while habitat suitability is positively associated with abundance its influence is reduced in the presence of the intervention.Conclusions/SignificanceThis study adds to the body of evidence demonstrating the impact of Tiny Targets on tsetse across a range of ecological settings, and further characterises the factors which modify its impact. The habitat suitability maps have the potential to guide the expansion of tsetse control activities in this area.Authors SummaryThere have been large declines in the number of cases of sleeping sickness as a result of programmes that actively screen and treat the at-risk population. Additional control is needed in areas where the disease persists such as parts of the Democratic Republic of Congo (DRC). The disease is transmitted by tsetse flies, and reducing the tsetse population using Tiny Targets has been shown to control the disease in other countries. Extensive tsetse monitoring has been undertaken in one Health Zone in DRC where Tiny Targets have been deployed. We used these data to gain a better understanding of tsetse habitat, to produce habitat suitability maps, and to subsequently measure the impact of Tiny Targets on the tsetse population. We show that tsetse flies are largely found along rivers and surrounding densely vegetated habitat, with there being a positive relationship between habitat suitability and the number of flies caught. Once Tiny Targets were introduced, the number of flies caught in monitoring traps decreased by >85%, with habitat suitability at the trap location, and the proximity of the trap to the nearest Tiny Target influencing the size of the effect of the intervention. This study adds to the body of evidence demonstrating the impact of Tiny Targets on tsetse distribution in addition to providing information that can be used to guide the expansion of tsetse control activities in this area.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要