Air-quality networks collect environmental DNA with the potential to measure biodiversity at continental scales

Current Biology(2023)

引用 3|浏览4
暂无评分
摘要
One of the biggest planetary challenges is the accelerating loss of biodiversity threatening ecosystem functioning on a global scale. The WWF Living Planet Report (https://livingplanet.panda.org/) estimates a 69% decline in populations since 1970. The Convention on Biological Diversity and related international treaties ask countries to monitor shifts in community composition and assess rates of species decline to quantify extant biodiversity relative to global targets1. However, quantifying biodiversity is a challenge, and monitoring continual change is impossible at almost any scale due to a lack of standardized data and indicators2,3. A common problem is that the required infrastructure for such global monitoring does not exist. Here, we challenge this notion by analysing environmental DNA (eDNA) captured along with particulate matter by routine ambient air quality monitoring stations in the UK. In our samples, we identified eDNA from >180 vertebrate, arthropod, plant and fungal taxa representative of local biodiversity. We contend that air monitoring networks are in fact gathering eDNA data reflecting local biodiversity on a continental scale, as a result of their routine function. In some regions, air quality samples are stored for decades, presenting the potential for high resolution biodiversity time series. With minimal modification of current protocols, this material provides the best opportunity to date for detailed monitoring of terrestrial biodiversity using an existing, replicated transnational design and it is already in operation.
更多
查看译文
关键词
environmental dna,biodiversity,air-quality air-quality
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要