Whole genome analysis and characterization of Salmonella enterica subsp. enterica serovar Typhimurium strain UPM 260 for mediated genetic manipulation

crossref(2020)

引用 0|浏览0
暂无评分
摘要
Abstract Background Salmonella enterica serovar Typhimurium persists as one of the most frequent food-borne zoonoses, causing a major public health concern worldwide. Furthermore, Salmonella infection has a large economic impact. Globally, the main sources of infection for humans include the consumption of contaminated poultry meat and eggs. In animals however, Salmonella transmission usually occurs horizontally from infected birds and contaminated environments. Hence, to delve further on how the impact of this disease can be lessened, an epidemiological study needs to be performed. It is vital to determine the genomic sequences of microorganisms to understand their biology and functional characterization. Thus, we determined the whole-genome sequence and virulence profile of S. enterica serovar Typhimurium strain UPM 260 isolated from Perak, Malaysia. Whole genome sequencing (WGS) using paired-end sequencing generated 107 contigs with a total genome size of 4.9 Mbp and 52% G+C content. The contigs were annotated for phylogenetic and functional analysis. Results Through the analysis, it is revealed that the genome were resistant to a number of antimicrobial drug classes including aminoglycoside, fluoroquinolone, tetracycline and phenicol. Also found in UPM 260 genome were three intact prophages (Fels-1, Gifsy-2 and one unique prophage, mEp390). The genome housed four types of restriction-modification systems (RMS) and Type I-E subtype of CRISPR-Cas system. Two metal resistance operons (mer and cop) and six pathogenicity islands (SPIs) were also discovered in UPM 260 genome. The SPIs contributed mostly to the bacterial virulence properties since 1054 CDS were reported to be homologous to the virulence factors in the database VFDB. Conclusion This study benefits us specifically in the field of genome engineering where gene-based genetic manipulations can be applied in reducing the prevalence and pathogenicity in Salmonella.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要