谷歌浏览器插件
订阅小程序
在清言上使用

Limitations of free energy diagrams to predict the catalytic activity: The reverse water gas shift reaction catalyzed by Ni/TiC

Journal of Catalysis(2023)

引用 1|浏览3
暂无评分
摘要
The temporal evolution at the catalyst surface is a result of an intricate interplay between all involved microscopic events such as adsorption, desorption, diffusion, and bond breaking/formation steps, and the interaction with the surrounding environment. By properly including these effects, kinetic Monte Carlo (kMC) simulations can accurately describe the complexity of real catalysts, unravel the dominant reaction mechanisms and provide fundamental understanding towards the rational design of novel catalysts. In this work, we combine density functional theory (DFT) calculations, statistical thermodynamics and kMC simulations to study the reverse water-gas shift (RWGS) reaction on Ni/TiC, a bifunctional catalyst. The predictions from DFT energy profiles do not coincide with the outcome of the kMC simulations, evidencing the limitations of the former, especially in including the effect of coverage of surface species, which plays a crucial role. The kMC simulations results are in remarkable agreement with the experimental data, proving that the kMC simulations are able to describe the complex chemistry of the RWGS reaction on a bifunctional catalyst. & COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Surface coverage,kinetic Monte Carlo,Density Functional Theory,Kinetic modeling,Mechanistic analysis,Rational design,Reverse water-gas shift reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要