Single dendritic neural classification with an effective spherical search-based whale learning algorithm.

Hang Yu, Jiarui Shi,Jin Qian,Shi Wang, Sheng Li

Mathematical biosciences and engineering : MBE(2023)

引用 0|浏览1
McCulloch-Pitts neuron-based neural networks have been the mainstream deep learning methods, achieving breakthrough in various real-world applications. However, McCulloch-Pitts neuron is also under longtime criticism of being overly simplistic. To alleviate this issue, the dendritic neuron model (DNM), which employs non-linear information processing capabilities of dendrites, has been widely used for prediction and classification tasks. In this study, we innovatively propose a hybrid approach to co-evolve DNM in contrast to back propagation (BP) techniques, which are sensitive to initial circumstances and readily fall into local minima. The whale optimization algorithm is improved by spherical search learning to perform co-evolution through dynamic hybridizing. Eleven classification datasets were selected from the well-known UCI Machine Learning Repository. Its efficiency in our model was verified by statistical analysis of convergence speed and Wilcoxon sign-rank tests, with receiver operating characteristic curves and the calculation of area under the curve. In terms of classification accuracy, the proposed co-evolution method beats 10 existing cutting-edge non-BP methods and BP, suggesting that well-learned DNMs are computationally significantly more potent than conventional McCulloch-Pitts types and can be employed as the building blocks for the next-generation deep learning methods.
AI 理解论文