Myasthenia Gravis: Novel Findings and Perspectives on Traditional to Regenerative Therapeutic Interventions

Aging and disease(2023)

引用 2|浏览1
暂无评分
摘要
The prevalence of myasthenia gravis (MG), an autoimmune disorder, is increasing among all subsets of the population leading to an elevated economic and social burden. The pathogenesis of MG is characterized by the synthesis of autoantibodies against the acetylcholine receptor (AChR), low-density lipoprotein receptor-related protein 4 (LRP4), or muscle-specific kinase at the neuromuscular junction, thereby leading to muscular weakness and fatigue. Based on clinical and laboratory examinations, the research is focused on distinguishing MG from other autoimmune, genetic diseases of neuromuscular transmission. Technological advancements in machine learning, a subset of artificial intelligence (AI) have been assistive in accurate diagnosis and management. Besides, addressing the clinical needs of MG patients is critical to improving quality of life (QoL) and satisfaction. Lifestyle changes including physical exercise and traditional Chinese medicine/herbs have also been shown to exert an ameliorative impact on MG progression. To achieve enhanced therapeutic efficacy, cholinesterase inhibitors, immunosuppressive drugs, and steroids in addition to plasma exchange therapy are widely recommended. Under surgical intervention, thymectomy is the only feasible alternative to removing thymoma to overcome thymoma-associated MG. Although these conventional and current therapeutic approaches are effective, the associated adverse events and surgical complexity limit their wide application. Moreover, Restivo et al. also, to increase survival and QoL, further recent developments revealed that antibody, gene, and regenerative therapies (such as stem cells and exosomes) are currently being investigated as a safer and more efficacious alternative. Considering these above-mentioned points, we have comprehensively reviewed the recent advances in pathological etiologies of MG including COVID-19, and its therapeutic management.
更多
查看译文
关键词
Myasthenia gravis (MG),autoantibodies,acetylcholine receptor (AChR),Experimental autoimmune myasthenia gravis (EAMG),stem cell,exosomes,artificial intelligence (AI)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要