Promoted wet peroxide oxidation of chlorinated volatile organic compounds catalyzed by FeOCl supported on macro-microporous biomass-derived activated carbon.

Journal of colloid and interface science(2023)

引用 1|浏览6
暂无评分
摘要
Chlorinated volatile organic compounds (CVOCs) are a recalcitrant class of air pollutants, and the strongly oxidizing reactive oxygen species (ROS) generated in advanced oxidation processes (AOPs) are promising to degrade them. In this study, a FeOCl-loaded biomass-derived activated carbon (BAC) has been used as an adsorbent for accumulating CVOCs and catalyst for activating H2O2 to construct a wet scrubber for the removal of airborne CVOCs. In addition to well-developed micropores, the BAC has macropores mimicking those of biostructures, which allows CVOCs to diffuse easily to its adsorption sites and catalytic sites. Probe experiments have revealed HO• to be the dominant ROS in the FeOCl/BAC + H2O2 system. The wet scrubber performs well at pH 3 and H2O2 concentrations as low as a few mM. It is capable of removing over 90% of dichloroethane, trichloroethylene, dichloromethane and chlorobenzene from air. By applying pulsed dosing or continuous dosing to replenish H2O2 to maintain its appropriate concentration, the system achieves good long-term efficiency. A dichloroethane degradation pathway is proposed based on the analysis of intermediates. This work may provide inspiration for the design of catalyst exploiting the inherent structure of biomass for catalytic wet oxidation of CVOCs or other contaminants.
更多
查看译文
关键词
wet peroxide oxidation,chlorinated volatile organic compounds,volatile organic compounds,carbon,macro-microporous,biomass-derived
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要