Genetic mapping and analysis of candidate leaf color genes in common winter wheat ( Triticum aestivum L.)

Molecular breeding : new strategies in plant improvement(2023)

引用 2|浏览4
暂无评分
摘要
Leaf color-related genes play key roles in chloroplast development and photosynthetic pigment biosynthesis and affect photosynthetic efficiency and grain yield in crops. In this study, a recessive homozygous individual displaying yellow leaf color (yl1) was identified in the progeny population derived from a cross between wheat cultivars Xingmai1 (XM1) and Yunong3114 (YN3114). Phenotypic identification showed that yl1 exhibited the yellow character state over the entire growth period. Compared with XM1, yl1 plants had significantly lower chlorophyll content and net photosynthetic rate, and similar results were found between the green-type lines and yellow-type lines in the BC 2 F 3 XM1 × yl1 population. Gene mapping via the bulked segregant exome capture sequencing (BSE-seq) method showed that the target gene TaYL1 was located within the region of 582,556,971–600,837,326 bp on chromosome 7D. Further analysis by RNA-seq suggested TraesCS7D02G469200 as a candidate gene for yellow leaf color in common wheat, which encodes a protein containing the AP2 domain. Moreover, comparative transcriptome profiling revealed that most differentially expressed genes (DEGs) were enriched in chlorophyll metabolism and photosynthesis pathways. Together, these results indicate that TaYL1 potentially affects chlorophyll synthesis and photosynthesis. This study further elucidates the biological mechanism of chlorophyll synthesis, metabolism, and photosynthesis in wheat and provides a theoretical basis for high photosynthetic efficiency in wheat breeding.
更多
查看译文
关键词
Common wheat,TaYL1,BSE-seq,Leaf color,Photosynthetic efficiency
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要