Intrareticular Charge Transfer Triggered Self-Electrochemiluminescence of Zirconium-Based Metal-Organic Framework Nanoparticles for Potential-Resolved Multiplex Immunoassays with Isolated Coreactants.

Analytical chemistry(2023)

引用 2|浏览9
暂无评分
摘要
In this work, a potential-resolved electrochemiluminescence (ECL) multiplex immunoassay (MIA) was developed using zirconium-based metal-organic framework (MOF) nanoparticles with intense self-ECL as an anodic ECL tag and CdTe nanocrystals (NCs) as a cathodic ECL tag. ECL luminophore 5,5'-(anthracene-9,10-diyl)diisophthalic acid (HADIP) and coreactant hexamethylenetetramine (HMT) bound to zirconium nodes in the MOF, giving Zr-ADIP-HMT nanoparticles. Benefiting from the intrareticular charge transfer (ICT) between the oxidized ligands of HADIP and HMT via hydrogen bonds, the intense self-ECL from Zr-ADIP-HMT was applied to the potential-resolved ECL MIA without an exogenous anodic coreactant, which can eliminate detrimental effects of multiplex coreactants and anodic ECL emission from CdTe NCs. The ICT within Zr-ADIP-HMT nanoparticles could shorten the electron transport path and reduce the complexity of radical intermediate transport. The ECL intensity from Zr-ADIP-HMT was 18.6-fold that from the mixture of HADIP and HMT. In potential-resolved ECL MIA, two lung cancer biomarkers, carcinoembryonic antigen and neuron-specific enolase, were adopted as model analytes, with detection limits of 18 and 5.3 fg·mL, respectively. The dual-ligand Zr-ADIP-HMT nanoparticles provide a proof of concept using ICT-based self-ECL luminophores for potential-resolved ECL MIAs with isolated coreactants.
更多
查看译文
关键词
metal–organic framework nanoparticles,self-electrochemiluminescence,zirconium-based,potential-resolved
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要