谷歌浏览器插件
订阅小程序
在清言上使用

Highly Enhancing CO2 Photoreduction by Metallization of an Imidazole-linked Robust Covalent Organic Framework

Small (Weinheim an der Bergstrasse, Germany)(2023)

引用 2|浏览13
暂无评分
摘要
Converting CO2 into value-added chemicals to solve the issues caused by carbon emission is promising but challenging. Herein, by embedding metal ions (Co2+, Ni2+, Cu2+, and Zn2+) into an imidazole-linked robust photosensitive covalent organic framework (PyPor-COF), effective photocatalysts for CO2 conversion are rationally designed and constructed. Characterizations display that all of the metallized PyPor-COFs (M-PyPor-COFs) display remarkably high enhancement in their photochemical properties. Photocatalysis reactions reveal that the Co-metallized PyPor-COF (Co-PyPor-COF) achieves a CO production rate as high as up to 9645 & mu;mol g(-1) h(-1) with a selectivity of 96.7% under light irradiation, which is more than 45 times higher than that of the metal-free PyPor-COF, while Ni-metallized PyPor-COF (Ni-PyPor-COF) can further tandem catalyze the generated CO to CH4 with a production rate of 463.2 & mu;mol g(-1) h(-1). Experimental analyses and theory calculations reveal that their remarkable performance enhancement on CO2 photoreduction should be attributed to the incorporated metal sites in the COF skeleton, which promotes the adsorption and activation of CO2 and the desorption of generated CO and even reduces the reaction energy barrier for the formation of different intermediates. This work demonstrates that by metallizing photoactive COFs, effective photocatalysts for CO2 conversion can be achieved.
更多
查看译文
关键词
CO2 reduction, covalent organic frameworks, metallization, photocatalysis, porphyrin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要