Assessing the role of the gut microbiome in methylmercury demethylation and elimination in humans and gnotobiotic mice.

Archives of toxicology(2023)

引用 0|浏览2
暂无评分
摘要
The risk of methylmercury (MeHg) toxicity following ingestion of contaminated foodstuffs (e.g., fish) is directly related to the kinetics of MeHg elimination among individuals. Yet, the factors driving the wide range of inter-individual variability in MeHg elimination within a population are poorly understood. Here, we investigated the relationship between MeHg elimination, gut microbiome demethylation activity, and gut microbiome composition using a coordinated human clinical trial and gnotobiotic mouse modeling approach together with metagenomic sequence analysis. We first observed MeHg elimination half-lives (t) ranging from 28 to 90 days across 27 volunteers. Subsequently, we found that ingestion of a prebiotic induced changes in the gut microbiome and mixed effects (increased, decrease, and no effect) on elimination in these same individuals. Nonetheless, elimination rates were found to correlate with MeHg demethylation activity in cultured stool samples. In mice, attempts to remove the microbiome via generation of germ-free (GF) animals or through antibiotic (Abx) treatment both diminished MeHg demethylation to a similar extent. While both conditions substantially slowed elimination, Abx treatment resulted in significantly slower elimination than the GF condition, indicating an additional role for host-derived factors in supporting elimination. Human fecal microbiomes transplanted to GF mice restored elimination rates to that seen in control mice. Metagenomic sequence analysis of human fecal DNA did not identify genes encoding proteins typically involved in demethylation (e.g., merB, organomercury lyase). However, the abundance of several anaerobic taxa, notably Alistipes onderdonkii, were positively correlated with MeHg elimination. Surprisingly, mono-colonization of GF free mice with A. onderdonkii did not restore MeHg elimination to control levels. Collectively, our findings indicate the human gut microbiome uses a non-conventional pathway of demethylation to increase MeHg elimination that relies on yet to be resolved functions encoded by the gut microbes and the hostClinical Trial NCT04060212, prospectively registered 10/1/2019.
更多
查看译文
关键词
Methylmercury,Demethylation,Half-life,Prebiotic,Elimination rate,Gut microbiome
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要