First principal observation documenting the three-dimensional uptake of cadmium and spatial distribution of cadmium hydroxyapatite mineral in bone char.

Chemosphere(2023)

引用 1|浏览6
暂无评分
摘要
The 3-D matrix scale ion-exchange mechanism was explored for high-capacity cadmium (Cd) removal using bone chars (BC) chunks (1-2 mm) made at 500 °C (500BCE) and 700 °C (700BCE) in aqueous solutions. The Cd incorporation into the carbonated hydroxyapatite (CHAp) mineral of BC was examined using a set of synchrotron-based techniques. The Cd removal from solution and incorporation into mineral lattice were higher in 500BCE than 700BCE, and the diffusion depth was modulated by the initial Cd concentration and charring temperature. A higher carbonate level of BC, more pre-leached Ca sites, and external phosphorus input enhanced Cd removal. The 500BCE showed a higher CO32-/PO43- ratio and specific surface area (SSA) than the 700BCE, providing more vacant sites by dissolution of Ca2+. In situ observations revealed the refilling of sub-micron pore space in the mineral matrix because of Cd incorporation.The X-ray nanodiffraction (XND) analyses revealed that Cd was mainly removed from water by incorporation into the mineral lattice of 500BCE via ion exchange, rather than surface sorption and precipitation, and the mineral phase was transformed from hydroxyapatite (HAp) to cadmium hydroxyapatite (Cd-HAp). The Rietveld's refinement of X-ray diffraction (XRD) data resolved up to 91% of the crystal displacement of Ca2+ by Cd2+. The A specific phase and stoichiometry of the new Cd-HAp mineral was dependent on the level of ion exchange. This mechanistic study confirmed that 3-D ion exchange was the most important path for heavy metal removal from aqueous solution and immobilization in BC mineral matrix, and put forward a novel and sustainable remediation strategy for Cd removal in wastewater and soil clean-up.
更多
查看译文
关键词
Bone char (BC),Cadmium (Cd),Ion-exchange,Carbonated hydroxyapatite (CHAp),Heavy metal,Remediation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要