FOXK2 amplification and overexpression promotes breast cancer development and chemoresistance.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览4
暂无评分
摘要
Activation of oncogenes through DNA amplification/overexpression plays an important role in cancer initiation and progression. Chromosome 17 has many cancer-associated genetic anomalies. This cytogenetic anomaly is strongly associated with poor prognosis of breast cancer. gene is located on 17q25 and encodes a transcriptional factor with a forkhead DNA binding domain. By integrative analysis of public genomic datasets of breast cancers, we found that is frequently amplified and overexpressed in breast cancers. FOXK2 overexpression in breast cancer patients is associated with poor overall survival. knockdown significantly inhibits cell proliferation, invasion and metastasis, and anchorage-independent growth, as well as causes G0/G1 cell cycle arrest in breast cancer cells. Moreover, inhibition of FOXK2 expression sensitizes breast cancer cells to frontline anti-tumor chemotherapies. More importantly, co-overexpression of FOXK2 and PI3KCA with oncogenic mutations (E545K or H1047R) induces cellular transformation in non-tumorigenic MCF10A cells, suggesting that is an oncogene in breast cancer and is involved in PI3KCA-driven tumorigenesis. Our study identified , , and Estrogen receptor alpha ( ) as direct transcriptional targets of FOXK2 in MCF-7 cells. Blocking CCNE2- and PDK1-mediated signaling by using small molecule inhibitors has synergistic anti-tumor effects in breast cancer cells. Furthermore, FOXK2 inhibition by gene knockdown or inhibitors for its transcriptional targets (CCNE2 and PDK1) in combination with PI3KCA inhibitor, Alpelisib, showed synergistic anti-tumor effects on breast cancer cells with PI3KCA oncogenic mutations. In summary, we provide compelling evidence that FOXK2 plays an oncogenic role in breast tumorigenesis and targeting FOXK2-mediated pathways may be a potential therapeutic strategy in breast cancer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要