Bias in Internet Measurement Platforms.
arXiv (Cornell University)(2023)
Abstract
Network operators and researchers frequently use Internet measurement platforms (IMPs), such as RIPE Atlas, RIPE RIS, or RouteViews for, e.g., monitoring network performance, detecting routing events, topology discovery, or route optimization. To interpret the results of their measurements and avoid pitfalls or wrong generalizations, users must understand a platform's limitations. To this end, this paper studies an important limitation of IMPs, the bias, which exists due to the non-uniform deployment of the vantage points. Specifically, we introduce a generic framework to systematically and comprehensively quantify the multi-dimensional (e.g., across location, topology, network types, etc.) biases of IMPs. Using the framework and open datasets, we perform a detailed analysis of biases in IMPs that confirms well-known (to the domain experts) biases and sheds light on less-known or unexplored biases. To facilitate IMP users to obtain awareness of and explore bias in their measurements, as well as further research and analyses (e.g., methods for mitigating bias), we publicly share our code and data, and provide online tools (API, Web app, etc.) that calculate and visualize the bias in measurement setups.
MoreTranslated text
Key words
Internet Topology,Bandwidth Estimation,Traffic Analysis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined