Significant effects of mixed cations on the morphology and photochemical activities of alkali-metal-antimony (Na,K)Sb3O7

Dalton transactions (Cambridge, England : 2003)(2023)

引用 0|浏览19
暂无评分
摘要
Oxide semiconductors with mixed-valence states generally exhibit excellent optoelectronic and photochemical properties due to facile charge transfer in redox reactions. In this work, we investigate the effects of mixed alkali on the optical absorption, luminescence spectra and photocatalytic abilities of (Na1-xKx)Sb3O7 nanoparticles. All the samples are fabricated using a simple one-step hydrothermal method. The structural studies show that the largest substitution of K+ ions in (Na1-xKx)Sb3O7 is at x = 0.3. In hydrothermal synthesis, the mixed arrangement of K+ and Na+ in (Na1-xKx)Sb3O7 has an influence on the crystal shape of particles. NaSb3O7 develops into a regular cube shape. With the increase of K+ ions in (Na1-xKx)Sb3O7, the edges and corners of the cube are further ground off, resulting in irregularly spherical particles. This mixed-alkali antimonite belongs to a p-type indirect allowed transition semiconductor, and the optical band gap is 2.71 eV (x = 0.3). The intrinsic luminescence of NaSb3O7 is detected at 540 nm, which is nearly quenched in Na0.7K0.3Sb3O7. It is demonstrated that the substitution of K+ in NaSb3O7 significantly increases the photodegradation of RhB solutions. There are two types of Sb cations, i.e., Sb5+ and Sb3+ mixed in the structure. The improved photocatalysis is attributed to the charge mediators between Sb5+/Sb3+ couples. The experiment shows that co-doping cations in antimonite oxides may be one of the strategies to improve photochemical properties.
更多
查看译文
关键词
photochemical activities,mixed cations,alkali-metal-antimony
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要